什么是贝塞尔曲线
贝塞尔曲线(Bézier curve),又称贝兹曲线或贝济埃曲线,是应用于二维图形应用程序的数学曲线。一般的矢量图形软件通过它来精确画出曲线,贝兹曲线由线段与节点组成,节点是可拖动的支点,线段像可伸缩的皮筋,我们在绘图工具上看到的钢笔工具就是来做这种矢量曲线的。主要结构:起始点、终止点(也称锚点)、控制点。通过调整控制点,贝塞尔曲线的形状会发生变化。
展示:一阶贝塞尔曲线(线段)
展示:二阶贝塞尔曲线(抛物线)
展示:三阶贝塞尔曲线
提供两个网站帮助我们了解贝塞尔曲线:
http://www.html-js.com/article/1628
http://bezier.method.ac/#
Android提供的贝塞尔曲线代码实现:
/**
* Add a quadratic bezier from the last point, approaching control point
* (x1,y1), and ending at (x2,y2). If no moveTo() call has been made for
* this contour, the first point is automatically set to (0,0).
*
* @param x1 The x-coordinate of the control point on a quadratic curve
* @param y1 The y-coordinate of the control point on a quadratic curve
* @param x2 The x-coordinate of the end point on a quadratic curve
* @param y2 The y-coordinate of the end point on a quadratic curve
*/
public void quadTo(float x1, float y1, float x2, float y2) {
isSimplePath = false;
native_quadTo(mNativePath, x1, y1, x2, y2);
}
/**
* Add a cubic bezier from the last point, approaching control points
* (x1,y1) and (x2,y2), and ending at (x3,y3). If no moveTo() call has been
* made for this contour, the first point is automatically set to (0,0).
*
* @param x1 The x-coordinate of the 1st control point on a cubic curve
* @param y1 The y-coordinate of the 1st control point on a cubic curve
* @param x2 The x-coordinate of the 2nd control point on a cubic curve
* @param y2 The y-coordinate of the 2nd control point on a cubic curve
* @param x3 The x-coordinate of the end point on a cubic curve
* @param y3 The y-coordinate of the end point on a cubic curve
*/
public void cubicTo(float x1, float y1, float x2, float y2,
float x3, float y3) {
isSimplePath = false;
native_cubicTo(mNativePath, x1, y1, x2, y2, x3, y3);
}
quadTo()方法从上一个点为起点开始绘制贝塞尔曲线,其中(x1,y1)为辅助控制点,(x2,y2)为终点。
cubicTo()方法从上一个点为起点开始绘制三阶贝塞尔曲线,其中(x1,y1),( x2, y2 )为辅助控制点,(x3,y3)为终点。
举个例子:
Path mPath = new Path();
mPath.moveTo(x0,y0);
mPath.quadTo(x1,y1,x2,y2);
如调用以上代码,即绘制起点(x0,y0),终点(x2,y2),辅助控制点(x1,y1)的贝塞尔曲线。因此,通过不断改变这三个点的位置,我们可以绘制出各种各样的曲线。
贴一份二阶贝塞尔曲线的测试代码,帮助理解(将以下自定义View在布局中引用即可看到效果):
基本思路:
- 1.先准备一支画笔。
- 2.分别指定起点、终点、以及控制点的值。
- 3.为了帮助理解,绘制上面3个点以及辅助线的位置。
- 4.绘制贝塞尔曲线。
- 5.简单重写滑动事件,让手指可以改变控制点的位置,使贝塞尔曲线进行重绘,让我们可以看到改变后的贝塞尔曲线。
package chao.base.view.view;
import android.content.Context;
import android.graphics.Canvas;
import android.graphics.Color;
import android.graphics.Paint;
import android.graphics.Path;
import android.graphics.PointF;
import android.util.AttributeSet;
import android.view.MotionEvent;
import android.view.View;
/**
* 二阶曲线
*/
public class Bezier extends View {
private Paint mPaint;
private int centerX, centerY;
private PointF start, end, control;
public Bezier(Context context, AttributeSet attrs) {
super(context, attrs);
mPaint = new Paint();
mPaint.setColor(Color.BLACK);
mPaint.setStrokeWidth(8);
mPaint.setStyle(Paint.Style.STROKE);
mPaint.setTextSize(60);
start = new PointF(0, 0);
end = new PointF(0, 0);
control = new PointF(0, 0);
}
public Bezier(Context context) {
this(context, null);
}
@Override
protected void onSizeChanged(int w, int h, int oldw, int oldh) {
super.onSizeChanged(w, h, oldw, oldh);
centerX = w / 2;
centerY = h / 2;
// 初始化数据点和控制点的位置
start.x = centerX - 200;
start.y = centerY;
end.x = centerX + 200;
end.y = centerY;
control.x = centerX;
control.y = centerY - 100;
}
@Override
public boolean onTouchEvent(MotionEvent event) {
// 根据触摸位置更新控制点,并提示重绘
control.x = event.getX();
control.y = event.getY();
invalidate();
return true;
}
@Override
protected void onDraw(Canvas canvas) {
super.onDraw(canvas);
// 绘制数据点和控制点
mPaint.setColor(Color.GRAY);
mPaint.setStrokeWidth(20);
canvas.drawPoint(start.x, start.y, mPaint);
canvas.drawPoint(end.x, end.y, mPaint);
mPaint.setColor(Color.BLUE);
canvas.drawPoint(control.x, control.y, mPaint);
// 绘制辅助线
mPaint.setStrokeWidth(4);
canvas.drawLine(start.x, start.y, control.x, control.y, mPaint);
canvas.drawLine(end.x, end.y, control.x, control.y, mPaint);
// 绘制贝塞尔曲线
mPaint.setColor(Color.RED);
mPaint.setStrokeWidth(8);
Path path = new Path();
path.moveTo(start.x, start.y);
path.quadTo(control.x, control.y, end.x, end.y);
canvas.drawPath(path, mPaint);
}
}